BEHAVIOR OF DOMAIN CONSTANTS UNDER CONFORMAL MAPPINGS

BY

W. MA AND D. MINDA*

Department of Mathematical Sciences
University of Cincinnati, Cincinnati, Ohio 45221-0025, USA

ABSTRACT

Domain constants are numbers attached to regions in the complex plane $\mathbb C$. For a region Ω in $\mathbb C$, let $d(\Omega)$ denote a generic domain constant. If there is an absolute constant M such that $M^{-1} \leq d(\Omega)/d(\Delta) \leq M$ whenever Ω and Δ are conformally equivalent, then the domain constant is called quasi-invariant under conformal mappings. If M=1, the domain constant is conformally invariant. There are several standard problems to consider for domain constants. One is to obtain relationships among different domain constants. Another is to determine whether a given domain constant is conformally invariant or quasi-invariant. In the latter case one would like to determine the best bound for quasi-invariance. We also consider a third type of result. For certain domain constants we show there is an absolute constant N such that $|d(\Omega)-d(\Delta)|\leq N$ whenever Ω and Δ are conformally equivalent, sometimes determining the best possible constant N. This distortion inequality is often stronger than quasi-invariance. We establish results of this type for six domain constants.

1. Introduction

Before discussing the six domain constants that we treat, we briefly recall some information about the hyperbolic and quasi-hyperbolic metrics. Notation for various domain constants is not standard; generally we employ the notation of [Ha] and [HM].

The hyperbolic metric on the unit disk $\mathbb{D} = \{z: |z| < 1\}$ is given by $\lambda_{\mathbb{D}}(z)|dz| = |dz|/(1-|z|^2)$. This metric is normalized to have Gaussian curvature -4. Let

^{*} Research partially supported by a National Science Foundation Grant. Received August 15, 1993

 Ω be a hyperbolic region in the complex plane \mathbb{C} ; that is, $\mathbb{C} \setminus \Omega$ contains at least two points. The hyperbolic metric $\lambda_{\Omega}(z)|dz|$ on Ω is determined from $\lambda_{\Omega}(\varphi(z))|\varphi'(z)| = \lambda_{\mathbb{D}}(z)$, where $\varphi \in \operatorname{Cov}(\mathbb{D},\Omega)$, the class of holomorphic universal covering projections of \mathbb{D} onto Ω . This definition is independent of the choice of covering projection. Let $d_{\Omega}(a,b)$ be the hyperbolic distance between a and b on Ω , and $D_{\Omega}(a,\rho) = \{z \in \Omega : d_{\Omega}(a,z) < \rho\}$ be the hyperbolic disk with center a and hyperbolic radius ρ .

158

For a region $\Omega \neq \mathbb{C}$, the quasi-hyperbolic metric on Ω is $|dz|/\delta_{\Omega}(z)$, where $\delta_{\Omega}(z) = \operatorname{dist}(z, \partial \Omega)$ is the euclidean distance from z to $\partial \Omega$. Schwarz's Lemma implies that $\lambda_{\Omega}(z)\delta_{\Omega}(z) \leq 1$ for every hyperbolic region Ω [K, p. 45].

(i) The constant $c(\Omega)$. A hyperbolic region Ω is called **uniformly perfect** if the hyperbolic and quasi-hyperbolic metrics are comparable [P₂]; that is, the domain constant

$$c(\Omega) = \inf\{\lambda_{\Omega}(z)\delta_{\Omega}(z): z \in \Omega\}$$

is positive. It is known that $c(\Omega) \leq 1/2$ with equality if and only if Ω is convex (see [Hi], [HM]). Also, $1/4 \leq c(\Omega) \leq 1/2$ when Ω is simply connected.

The quasi-invariance of $c(\Omega)$ was established by Osgood [O]. He showed that there exists a positive constant $B \leq 6$ such that $1/B \leq c(\Delta)/c(\Omega) \leq B$ when Δ and Ω are conformally equivalent regions. Minda [M₁] decreased this to $B \leq 4 \coth(\pi/2\sqrt{3}) = 5.5583...$ Harmelin and Minda [HM] improved this to $2 \leq B \leq (1 + \coth^2(\pi/4))^{1/2} = 2.824...$, and conjectured that B = 2. We obtain $B < (1 + \coth^2(\pi/3))^{1/2} = 2.4335...$ We also establish that

$$\frac{1}{2(1+c(\Omega)-c(\Omega)^2)} \leq \frac{c(\Delta)}{c(\Omega)} \leq 2\left(1+c(\Delta)-c(\Delta)^2\right).$$

Note that as either $c(\Omega)$ or $c(\Delta)$ tends to zero, then the preceding upper and lower bounds both tend to 2, the conjectured constant. This shows that the conjectured value B=2 is asymptotically true.

(ii) The constant $\eta(\Omega)$. For any hyperbolic region Ω , the domain constant $\eta(\Omega)$ is defined by

$$\eta(\Omega) = \frac{1}{2} \sup \left\{ \lambda_{\Omega}^{-1}(w) |\nabla \log \lambda_{\Omega}(w)| \colon w \in \Omega \right\}$$
$$= \sup \left\{ \lambda_{\Omega}^{-1}(w) \left| \frac{\partial}{\partial w} \log \lambda_{\Omega}(w) \right| \colon w \in \Omega \right\}.$$

We also know that

$$\eta(\Omega) = \sup \left\{ \left| (1 - |z|^2) \frac{\varphi''(z)}{2\varphi'(z)} - \bar{z} \right| : z \in \mathbb{D} \right\} \quad \text{for some } \varphi \in \text{Cov}(\mathbb{D}, \Omega)$$
$$= \sup \left\{ \left| \frac{\varphi''(0)}{2\varphi'(0)} \right| : \varphi \in \text{Cov}(\mathbb{D}, \Omega) \right\}.$$

It is known that $\eta(\Omega) \geq 1$ and equality holds if and only if Ω is convex ([P₁], [Y₁]). (In [Y₁] the notation $\omega(\Omega)$ is used in place of $\eta(\Omega)$.) Moreover, $1 \leq \eta(\Omega) \leq 2$ when Ω is simply connected.

It was proved in [HM] that $1/2 \leq \eta(\Delta)/\eta(\Omega) \leq 2$ if Δ and Ω are conformally equivalent; the constants are best possible. This result implies that $\eta(\Delta)$ lies in an interval of length $3\eta(\Omega)/2$. As $\eta(\Omega)$ tends to ∞ , the length of this interval also tends to ∞ . We prove that for conformally equivalent regions Δ and Ω , $|\eta(\Delta) - \eta(\Omega)| \leq 1$. This shows that $\eta(\Delta)$ lies in a closed interval of length 1 and yields the known result $1/2 \leq \eta(\Delta)/\eta(\Omega) \leq 2$.

We set

$$\tilde{\eta}(\Omega) = \sup \{ \eta(\Delta) : \Delta \text{ is conformally equivalent to } \Omega \}.$$

Note that $\tilde{\eta}(\Omega) \leq \eta(\Omega) + 1 \leq 2\eta(\Omega)$ and $\tilde{\eta}(\Omega) = 2$ if Ω is simply connected because $\eta(\mathbb{C} \setminus (-\infty, 0]) = 2$.

(iii) The constant $a(\Omega)$. Let $S(\Omega)$ denote the family of functions holomorphic and univalent in Ω . Yamashita $[Y_1]$ called a hyperbolic region Ω of finite type if the domain constant

$$a(\Omega) = \sup \left\{ \frac{1}{\lambda_{\Omega}(z)} \left| \frac{f''(z)}{f'(z)} \right| : z \in \Omega, f \in S(\Omega) \right\}$$

is finite. Osgood [O] proved that $2/c(\Omega) \leq a(\Omega) \leq 4/c(\Omega)$, so Ω is of finite type if and only if it is uniformly perfect. In particular, $a(\Omega) \geq 4$; Osgood also showed that $a(\Omega) \leq 8$ if Ω is simply connected. In addition, Yamashita [Y₁] proved $a(\Omega) \leq 6$ for each convex region Ω , and $a(\Omega) \leq 8\eta(\Omega)$.

We show that $a(\Omega) \leq 2\tilde{\eta}(\Omega) + 2\eta(\Omega)$ with equality if Ω is simply connected. This result contains those of Osgood and Yamashita mentioned above. We also prove that $a(\Omega)$ is quasi-invariant under conformal mappings: $1/2 \leq a(\Delta)/a(\Omega) \leq 2$ if Δ and Ω are conformally equivalent.

(iv) The constant $\beta(\Omega)$. If $\varphi \in \text{Cov}(\mathbb{D}, \Omega)$, then $\beta(\Omega)$ is defined by

$$\beta(\Omega) = \frac{1}{2} \sup\{(1 - |z|^2)^2 |S_{\varphi}(z)| : z \in \mathbb{D}\},$$

where

$$S_{arphi}(z) = rac{arphi'''(z)}{arphi'(z)} - rac{3}{2} \left(rac{arphi''(z)}{arphi'(z)}
ight)^2$$

is the Schwarzian derivative of φ . If Δ and Ω are conformally equivalent, then $1/3 \leq \beta(\Delta)/\beta(\Omega) \leq 3$ provided $\beta(\Omega), \beta(\Delta) \geq 1$ and the constants are best possible [HM]. We show that if Δ and Ω are conformally equivalent, then $|\beta(\Delta) - \beta(\Omega)| \leq 6$.

(v) The constants $R(\Omega)$ and $R_c(\Omega)$. For a holomorphic function φ in \mathbb{D} , let

$$\rho(\varphi) = \sup\{\rho: \varphi \text{ is injective in } D_{\mathbb{D}}(a, \rho) \text{ for every } a \in \mathbb{D}\}$$

and

$$\rho_c(\varphi) = \sup\{\rho: \varphi \text{ is injective on } D_{\mathbb{D}}(a,\rho) \text{ and } \varphi(D_{\mathbb{D}}(a,\rho)) \text{ is convex in } \mathbb{C}$$
for every $a \in \mathbb{D}$.

The quantity $\rho(\varphi)$ is called the hyperbolic radius of uniform local univalence of φ , while $\rho_c(\varphi)$ is called the hyperbolic radius of uniform local euclidean convexity of φ . For $\varphi \in \text{Cov}(\mathbb{D},\Omega)$ we define $R(\Omega) = \tanh(\rho(\varphi))$ and $R_c(\Omega) = \tanh(\rho_c(\varphi))$. These two quantities are independent of the choice of the covering projection and so define domain constants; $R(\Omega)$ is a conformal invariant. $R(\Omega)$ is called the pseudo-hyperbolic radius of injectivity and $R_c(\Omega)$ is called the pseudo-hyperbolic radius of convexity. We know that $[MM_1]$

$$\eta(\Omega) = \coth(2\rho_c(\varphi)) = \frac{1}{2} \left(R_c(\Omega) + \frac{1}{R_c(\Omega)} \right).$$

If Δ and Ω are conformally equivalent, then $2 - \sqrt{3} \leq R_c(\Delta)/R_c(\Omega) \leq 2 + \sqrt{3}$ and the constants are best possible [HM]. We shall also prove that if Δ and Ω are conformally equivalent, then

$$|R_c(\Delta) - R_c(\Omega)| \le \sqrt{3} - 1$$
 and $|1/R_c(\Delta) - 1/R_c(\Omega)| \le \sqrt{3} + 1$;

both inequalities are best possible.

2. Additive change in $\beta(\Omega)$, $\eta(\Omega)$ and $R_c(\Omega)$ under a conformal mapping

Harmelin and Minda [HM] obtained the best possible bounds on the ratios $\beta(\Delta)/\beta(\Omega)$, $\eta(\Delta)/\eta(\Omega)$ and $R_c(\Delta)/R_c(\Omega)$ for conformally equivalent Δ and Ω . In this section, we give constant upper bounds on the differences

$$|\beta(\Delta) - \beta(\Omega)|, \quad |\eta(\Delta) - \eta(\Omega)|, \quad |R_c(\Delta) - R_c(\Omega)| \quad \text{and} \quad \left|\frac{1}{R_c(\Delta)} - \frac{1}{R_c(\Omega)}\right|;$$

except possibly for the first difference, the constant bound is best possible.

THEOREM 1: Let Δ and Ω be conformally equivalent. Then $|\beta(\Delta) - \beta(\Omega)| \leq 6$.

Proof: Since Δ and Ω are conformally equivalent, there exists $f \in S(\Omega)$ such that $\Delta = f(\Omega)$. Let $\varphi \in \text{Cov}(\mathbb{D}, \Omega)$. Then $g = f \circ \varphi \in \text{Cov}(\mathbb{D}, \Delta)$ and $S_g(z) = S_f(\varphi(z))\varphi'(z)^2 + S_{\varphi}(z)$. Note that $\lambda_{\Omega}(\varphi(z))|\varphi'(z)| = 1/(1-|z|^2)$. We have

$$\begin{split} \beta(\Delta) &= \frac{1}{2} \sup \left\{ \left(1 - |z|^2 \right)^2 |S_g(z)| \colon z \in \mathbb{D} \right\} \\ &\leq \frac{1}{2} \sup \left\{ \left(1 - |z|^2 \right)^2 |\varphi'(z)|^2 |S_f(\varphi(z))| \colon z \in \mathbb{D} \right\} \\ &+ \frac{1}{2} \sup \left\{ \left(1 - |z|^2 \right)^2 |S_{\varphi}(z)| \colon z \in \mathbb{D} \right\} \\ &= \frac{1}{2} \sup \left\{ \lambda_{\Omega}^{-2}(w) |S_f(w)| \colon w \in \Omega \right\} + \beta(\Omega) \\ &\leq 6 + \beta(\Omega). \end{split}$$

The last inequality follows from a result of Beardon and Gehring [BG]. Thus, $\beta(\Delta) - \beta(\Omega) \le 6$. By symmetry, $\beta(\Omega) - \beta(\Delta) \le 6$.

If Δ and Ω are simply connected, then $0 \leq \beta(\Omega), \beta(\Delta) \leq 3$ and the upper bound in Theorem 1 can be replaced by 3.

Yamashita $[Y_1]$ was the first to consider bounding the difference of $\eta(\Delta)$ and $\eta(\Omega)$ for conformally equivalent regions; he proved that $|\eta(\Delta) - \eta(\Omega)| \le a(\Omega)/2$. The inequalities $\beta(\Delta) \ge \eta(\Delta)^2 - 1$ $[P_1]$ and $\beta(\Omega) \le \eta(\Omega)^2 + 1$ [Ha] in conjunction with Theorem 1 yield $|\eta(\Delta) - \eta(\Omega)| \le 8/(\eta(\Delta) + \eta(\Omega))$ for conformally equivalent Ω and Δ , which tells us that the quantity $|\eta(\Delta) - \eta(\Omega)|$ tends to zero as either $\eta(\Delta)$ or $\eta(\Omega)$ tends to ∞ . We now obtain the sharp constant upper bound on this difference.

Theorem 2: Suppose Δ and Ω are conformally equivalent. Then

$$|\eta(\Delta) - \eta(\Omega)| \le 1.$$

This bound is best possible.

Proof: We begin by demonstrating that the bound is best possible. The sharpness is clear from $\eta(\mathbb{D}) = 1$ and $\eta(\mathbb{C} \setminus (-\infty, 0]) = 2$.

It is enough to show that $\eta(\Delta) - \eta(\Omega) \leq 1$ for conformally equivalent regions Ω and Δ . If Ω and Δ are simply connected, then $\eta(\Delta)$, $\eta(\Omega) \in [1,2]$ and the inequality is trivial in this case. Therefore, we may assume that Ω and Δ are not simply connected, so that $\eta(\Omega) > 1$ and $\beta(\Omega) > 1$. We consider several cases.

First, assume $\eta(\Omega) \geq 3.5$. Suppose it were true that $\eta(\Delta) > 1 + \eta(\Omega)$. Now, $\beta(\Delta) \geq \eta(\Delta)^2 - 1$ [P₁] and $\beta(\Omega) \leq \eta(\Omega)^2 + 1$ [Ha]. By using Theorem 1 we have

$$1 < \eta(\Delta) - \eta(\Omega) = \frac{\eta^2(\Delta) - \eta^2(\Omega)}{\eta(\Delta) + \eta(\Omega)} < \frac{\beta(\Delta) + 1 - \beta(\Omega) + 1}{1 + 2\eta(\Omega)} \le \frac{6 + 2}{1 + 7} = 1,$$

a contradiction. Therefore, $\eta(\Delta) - \eta(\Omega) \le 1$ when $\eta(\Omega) \ge 3.5$.

It remains to consider the case in which $1 < \eta(\Omega) < 3.5$ and $\beta(\Omega) > 1$. We know that

$$\eta(\Delta) \leq \sqrt{1 + 3/R^2(\Delta)} \ [\mathrm{MM_1}] \quad \mathrm{and} \quad R(\Omega) \geq \tanh\left(\frac{\pi}{2\sqrt{\beta(\Omega) - 1}}\right)$$

(see [BS], [M₁], [S]), so

(1)
$$\eta(\Delta) - \eta(\Omega) \le \sqrt{1 + 3/R^2(\Delta)} - \eta(\Omega) = \sqrt{1 + 3/R^2(\Omega)} - \eta(\Omega)$$
$$\le \sqrt{1 + 3\coth^2\left(\frac{\pi}{2\sqrt{\beta(\Omega) - 1}}\right)} - \eta(\Omega).$$

Suppose $\sqrt{1+\sqrt{2}} \le \eta(\Omega) < 3.5$. By using $\beta(\Omega) \le \eta(\Omega)^2 + 1$ [Ha], we have

$$\eta(\Delta) - \eta(\Omega) \le \sqrt{1 + 3 \coth^2\left(\frac{\pi}{2\eta(\Omega)}\right)} - \eta(\Omega).$$

We prove that the right-hand side of the preceding inequality is at most 1. This is equivalent to

$$F(\eta) \equiv \sqrt{\frac{\eta^2 + 2\eta}{3}} - \coth\left(\frac{\pi}{2\eta}\right) \ge 0, \quad \sqrt{1 + \sqrt{2}} \le \eta < 3.5.$$

Note that

$$F'(\eta) = \frac{\eta + 1}{\sqrt{3(\eta^2 + 2\eta)}} - \frac{\pi}{2\eta^2 \sinh^2(\pi/2\eta)}.$$

It is easy to see that both $(\eta+1)/\sqrt{3(\eta^2+2\eta)}$ and $\eta \sinh(\pi/2\eta)$ are decreasing on $(1,\infty)$, so $F(\eta)$ is concave downward on $(1,\infty)$. As $F(\sqrt{1+\sqrt{2}})>0$ and $F(3.5)=\sqrt{77/12}-\coth(\pi/7)>0$, we conclude that $F(\eta)>0$ on $[\sqrt{1+\sqrt{2}},3.5)$. Finally, we consider the most delicate case: $1<\eta(\Omega)<\sqrt{1+\sqrt{2}}$. From (1), it is enough to show that

$$\sqrt{1+3\coth^2\left(rac{\pi}{2\sqrt{eta(\Omega)-1}}
ight)}-\eta(\Omega)\leq 1,$$

which is equivalent to

$$\frac{\pi}{\sqrt{\beta(\Omega)-1}} - \log \frac{\sqrt{\eta^2(\Omega)+2\eta(\Omega)}+\sqrt{3}}{\sqrt{\eta^2(\Omega)+2\eta(\Omega)}-\sqrt{3}} \ge 0.$$

For $\eta(\Omega) \in (1, \sqrt{1+\sqrt{2}}] = I$, Harmelin [Ha] proved that

$$\beta(\Omega) \leq \frac{1}{2^{3/2}\eta} \left(27\eta^4 - 18\eta^2 - 1 + \left(\eta^2 - 1\right)^{1/2} \left(9\eta^2 - 1\right)^{3/2}\right)^{1/2},$$

where $\eta = \eta(\Omega)$. The result will follow if we can show that

$$\frac{\pi 2^{3/4} \sqrt{\eta}}{(\sqrt{27\eta^4 - 18\eta^2 - 1 + (\eta^2 - 1)^{1/2}(9\eta^2 - 1)^{3/2}} - 2^{3/2}\eta)^{1/2}}$$
$$-\log \frac{\sqrt{\eta^2 + 2\eta} + \sqrt{3}}{\sqrt{\eta^2 + 2\eta} - \sqrt{3}} \ge 0 \quad \text{for } \eta \in I.$$

Let $G(\eta)$ denote the left-hand side of the inequality. The minimum value of G on I is 0.063357... and is attained uniquely at the point x = 1.182290... This was verified using both Mathematica 2.0 and Maple V. This completes the proof.

Remark: Yamashita [Y₁] observed that

$$N(\Omega) = \{\eta(\Delta) : \Delta \text{ is conformally equivalent to } \Omega\}$$

is the closed interval [1,2] when Ω is simply connected. He raised the problem of determining the set $N(\Omega)$ for uniformly perfect, but not simply connected, Ω . He pointed out that the set is contained in the interval $(1,\infty)$. Theorem 2 shows that $N(\Omega)$ is always contained in a closed interval of length 1; actually, the length of the interval tends to zero as $\eta(\Omega)$ tends to ∞ .

Theorem 3: Let Δ and Ω be conformally equivalent. Then

$$|R_c(\Delta) - R_c(\Omega)| \le \sqrt{3} - 1$$

and

$$\left| \frac{1}{R_c(\Delta)} - \frac{1}{R_c(\Omega)} \right| \le \sqrt{3} + 1.$$

These upper bounds are best possible.

Proof: In order to establish the first inequality, we need only prove that $R_c(\Delta) - R_c(\Omega) \leq \sqrt{3} - 1$. Since $R_c(\Delta) \leq R(\Delta)$ and $R_c(\Omega) \geq (2 - \sqrt{3})R(\Omega)$ [HM], we obtain

$$R_c(\Delta) - R_c(\Omega) \le R(\Delta) - (2 - \sqrt{3})R(\Omega) = (\sqrt{3} - 1)R(\Omega) \le \sqrt{3} - 1$$

For $\Delta = \mathbb{D}$ and $\Omega = \mathbb{C} \setminus (-\infty, 0], R_c(\Delta) = 1$ and $R_c(\Omega) = 2 - \sqrt{3}$. Thus, the estimate is sharp.

The second inequality is a consequence of the first and Theorem 2. Because

$$\eta(\Omega) = \frac{1}{2} \left(R_c(\Omega) + \frac{1}{R_c(\Omega)} \right),$$

we have

$$\left|\frac{1}{R_c(\Delta)} - \frac{1}{R_c(\Omega)}\right| \le 2|\eta(\Delta) - \eta(\Omega)| + |R_c(\Delta) - R_c(\Omega)| \le 2 + \sqrt{3} - 1 = \sqrt{3} + 1.$$

The same Δ and Ω as before show that this inequality is best possible.

3. Quasi-invariance of $c(\Omega)$

In order to obtain better upper and lower bounds on $c(\Delta)/c(\Omega)$ for conformally equivalent Δ and Ω , we improve the estimate $\eta(\Omega) \leq 1/c(\Omega)$ of Osgood [O]. Recall that a subset E of a hyperbolic region Ω is hyperbolically convex in Ω if for every pair of points a and b in E each arc of any hyperbolic geodesic in Ω connecting a and b lies in E (see [J] and [MM₂]). Osgood [O] showed that $|\nabla \log \lambda_{\Omega}(w)| \leq 2/\delta_{\Omega}(w)$ for any hyperbolic region; he raised the question of the sharpness of the constant 2. For simply connected regions the sharp constant is 4/3 [O], while it can be reduced to 1 for convex regions [M₂]. The following result strengthens Osgood's inequality and shows that the constant 2 can be quantitatively improved for uniformly perfect regions. Our method of proof is different from Osgood's.

THEOREM 4: For any hyperbolic region Ω ,

$$|\nabla \log \lambda_{\Omega}(w)| \leq \frac{2}{\delta_{\Omega}(w)} \left[1 - \lambda_{\Omega}^{2}(w) \delta_{\Omega}^{2}(w) \right] \leq \frac{2}{\delta_{\Omega}(w)} \left[1 - c^{2}(\Omega) \right].$$

Proof: The second inequality is elementary. The first inequality is established as follows. Fix $a \in \Omega$. Let $\varphi \in \text{Cov}(\mathbb{D}, \Omega), a = \varphi(0)$ and $\delta = \delta_{\Omega}(a)$. Then $\lambda_{\Omega}(a)|\varphi'(0)| = \lambda_{\mathbb{D}}(0) = 1$. Choose $f(w) = \varphi^{-1}(a + \delta w)$ with f(0) = 0; a single-valued branch of φ^{-1} exists in the euclidean disk $D(a, \delta)$ with center a and radius δ since φ is a covering projection. We have $\varphi'(0)f'(0) = \delta$ and $\varphi''(0)f'(0)^2 + \varphi'(0)f''(0) = 0$. Because $D(a, \delta)$ is hyperbolically convex in Ω [J], the function f is hyperbolically convex in \mathbb{D} . Since f is hyperbolically convex in \mathbb{D} , $|f''(0)| \leq 2|f'(0)|(1-|f'(0)|^2)$ [MM₂]. This yields

$$egin{aligned} & rac{|
abla \log \lambda_\Omega(a)|}{2\lambda_\Omega(a)} = \left|rac{arphi''(0)}{2arphi'(0)}
ight| = \left|rac{f''(0)}{2f'(0)^2}
ight| \leq rac{1}{|f'(0)|} - |f'(0)| \ & = rac{|\phi'(0)|}{\delta} - rac{\delta}{|\phi'(0)|} = rac{1}{\lambda_\Omega(a)\delta_\Omega(a)} - \lambda_\Omega(a)\delta_\Omega(a), \end{aligned}$$

which is the desired result.

COROLLARY 1: For any hyperbolic region $\Omega, \eta(\Omega) \leq \frac{1}{c(\Omega)} - c(\Omega)$.

Proof: Since the function h(t) = t - 1/t is decreasing on (0,1) and $c(\Omega) \le \lambda_{\Omega}(a)\delta_{\Omega}(a)$, the result follows from the inequality in the proof of Theorem 4.

COROLLARY 2: If Δ and Ω are conformally equivalent hyperbolic regions, then

$$\frac{1}{2\left(1+c(\Omega)-c(\Omega)^2\right)} \leq \frac{c(\Delta)}{c(\Omega)} \leq 2\left(1+c(\Delta)-c(\Delta)^2\right).$$

Proof: We prove the upper bound; the lower bound then follows by symmetry. By using Corollary 1 for Δ , Theorem 2 and $1/c(\Omega) \leq 2\eta(\Omega)$ [O], we see that

$$\frac{1}{c(\Omega)} \leq 2\eta(\Omega) \leq 2(\eta(\Delta) + 1) \leq 2\left(\frac{1}{c(\Delta)} - c(\Delta) + 1\right),$$

which is equivalent to

$$\frac{c(\Delta)}{c(\Omega)} \le 2\left(1 + c(\Delta) - c(\Delta)^2\right).$$

Remark: There is an interesting geometric interpretation for Theorem 4. Jørgensen [J] proved that if γ is a hyperbolic geodesic in Ω and C_w is the euclidean circle of curvature at a point $w \in \gamma$, then $\overline{C_w} \cap \partial \Omega \neq \emptyset$. Theorem 4

strengthens this to show that the euclidean circle of curvature actually protrudes beyond $\partial\Omega$ when Ω is uniformly perfect. The hyperbolic curvature $\kappa_{\Omega}(w,\gamma)$ of a path γ : w=w(t) in Ω is given by

$$\kappa_{\Omega}(w,\gamma)\lambda_{\Omega}(w) = \kappa_{e}(w,\gamma) + \operatorname{Im}\left\{\frac{2\partial \log \lambda_{\Omega}(w)}{\partial w} \frac{w'(t)}{|w'(t)|}\right\},$$

where $\kappa_e(w, \gamma)$ is the euclidean curvature. A hyperbolic geodesic has zero hyperbolic curvature, so the euclidean curvature satisfies

$$|\kappa_e(w,\gamma)| \leq \left| \operatorname{Im} \left\{ \frac{2\partial \log \lambda_\Omega(w)}{\partial w} \frac{w'(t)}{|w'(t)|} \right\} \right| \leq \frac{2}{\delta_\Omega(w)} [1 - c^2(\Omega)].$$

If $r_e(w,\gamma)$ is the euclidean radius of curvature, the preceding inequality yields $r_e(w,\gamma) \geq \delta_{\Omega}(w)/2 \left[1-c^2(\Omega)\right]$. Thus, the diameter of C_w is at least $\delta_{\Omega}(w)/[1-c^2(\Omega)] > \delta_{\Omega}(w)$, so C_w must contain boundary points in its interior.

Corollary 2 immediately yields $c(\Delta)/c(\Omega) \leq 2.5$ for conformally equivalent regions Δ and Ω . We can do even better.

Theorem 5: Suppose Δ and Ω are conformally equivalent. Then

$$\frac{1}{\sqrt{1+3\coth^2(\pi/3)}} < \frac{c(\Delta)}{c(\Omega)} < \sqrt{1+3\coth^2(\pi/3)} = 2.4335....$$

Proof: We only need to establish the lower bound because of symmetry. If Ω and Δ are simply connected, then the inequality is trivial since $c(\Omega)$, $c(\Delta) \in [1/4, 1/2]$. Therefore, we may assume Ω and Δ are not simply connected. From $\eta(\Delta) \leq \sqrt{1 + 3/R^2(\Delta)}$ [MM₁] and $c(\Delta) \geq 1/2\eta(\Delta)$ [O], we see that

$$c(\Delta) \ge \frac{R(\Delta)}{2\sqrt{3+R^2(\Delta)}} = \frac{R(\Omega)}{2\sqrt{3+R^2(\Omega)}}.$$

The inequality $R(\Omega) \ge \tanh(\pi/2\eta(\Omega))$ is valid if $\beta(\Omega) \ge 1$ [HM]; $\beta(\Omega) \ge 1$ holds because Ω is not simply connected [N]. Corollary 1 of Theorem 4 now gives

$$\frac{c(\Delta)}{c(\Omega)} \geq \frac{1}{2c(\Omega)\sqrt{1 + 3 \coth^2\left(\frac{\pi c(\Omega)}{2 - 2c(\Omega)^2}\right)}}.$$

We obtain the desired lower bound if we can prove for $c(\Omega) \in [0, 1/2)$ that

$$2c(\Omega)\sqrt{1+3\coth^2\left(\frac{\pi c(\Omega)}{2-2c(\Omega)^2}\right)}<\sqrt{1+3\coth^2(\pi/3)};$$

the right-hand side of the inequality is the value of the left-hand side for $c(\Omega) = 1/2$. As $c(\Omega)$ tends to zero, it is easy to see that the left-hand side of the preceding inequality tends to $4\sqrt{3}/\pi$, which is strictly less than $\sqrt{1+3\coth^2(\pi/3)}$. So we only need to consider the case $c(\Omega) \in (0,1/2)$. Direct computation shows that the above inequality is the same as

$$\tanh\left(\frac{\pi x}{2 - 2x^2}\right) > \frac{2\sqrt{3}x}{\sqrt{a - 4x^2}},$$

where $x = c(\Omega)$ and $a = 1 + 3 \coth^2(\pi/3)$, or equivalently,

$$h(x) \equiv \frac{\pi x}{1 - x^2} - \log \frac{\sqrt{a - 4x^2} + 2\sqrt{3}x}{\sqrt{a - 4x^2} - 2\sqrt{3}x} > 0.$$

Now,

$$h'(x) = \frac{\pi(1+x^2)}{(1-x^2)^2} - \frac{4\sqrt{3}a}{\sqrt{a-4x^2}(a-16x^2)}.$$

If we can prove that h'(x) has only one zero x_0 in (0,1/2), then from

$$h'(0) = \pi - \frac{4\sqrt{3}}{\sqrt{a}} > 0$$
 and $h'(1/2) = \frac{20\pi}{9} - \frac{4\sqrt{3}a}{\sqrt{a-1}(a-4)} < 0$

we know that h'(x) > 0 on $[0, x_0)$ and h'(x) < 0 on $(x_0, 1/2]$. Therefore, h(x) > 0 in (0, 1/2) since h(0) = h(1/2) = 0. Set $y = 4x^2$, then 0 < y < 1 and h'(x) = 0 is the same as

$$g(y) \equiv \pi^{2}(4+y)^{2}(a-4y)^{2}(a-y) - 3a^{2}(4-y)^{4} = 0.$$

As $g(0) = 16a^2(\pi^2a - 48) > 0$, $g(1) = 25\pi^2(a - 4)^2(a - 1) - 243a^2 < 0$ and g'(y) < 0 on (0,1), which can be checked by writing g'(y) as a polynomial, we conclude that g(y) has only one zero on (0,1). Thus, h'(x) has only one zero on (0,1/2). This completes the proof of Theorem 5.

4. Quasi-invariance of $a(\Omega)$

We investigate estimates of $a(\Delta)/a(\Omega)$ for conformally equivalent Δ and Ω . First, we establish the following upper bound on $a(\Omega)$ in terms of $\eta(\Omega)$ and $\tilde{\eta}(\Omega)$.

THEOREM 6: For a hyperbolic region Ω , $a(\Omega) \leq 2\tilde{\eta}(\Omega) + 2\eta(\Omega)$ with equality if Ω is simply connected.

Proof: Note that $\eta(\Omega)$, $\tilde{\eta}(\Omega)$ and $a(\Omega)$ can be expressed, respectively, by

$$\begin{split} \eta(\Omega) &= \sup \left\{ \left| \frac{\varphi''(0)}{2\varphi'(0)} \right| \colon \varphi \in \mathrm{Cov}(\mathbb{D},\Omega) \right\}, \\ \tilde{\eta}(\Omega) &= \sup \left\{ \left| \frac{(f \circ \varphi)''(0)}{2(f \circ \varphi)'(0)} \right| \colon \varphi \in \mathrm{Cov}(\mathbb{D},\Omega) \text{ and } f \in S(\Omega) \right\} \end{split}$$

and

$$\begin{split} a(\Omega) &= \sup \left\{ \lambda_{\Omega}^{-1}(\varphi(z)) \left| \frac{f''(\varphi(z))}{f'(\varphi(z))} \right| \colon z \in \mathbb{D} \text{ and } f \in S(\Omega) \right\} \\ &= \sup \left\{ (1 - |z|^2) \left| \frac{(f \circ \varphi)''(z)}{(f \circ \varphi)'(z)} - \frac{\varphi''(z)}{\varphi'(z)} \right| \colon z \in \mathbb{D} \text{ and } f \in S(\Omega) \right\} \\ &= \sup \left\{ \left| \frac{(f \circ \varphi)''(0)}{(f \circ \varphi)'(0)} - \frac{\varphi''(0)}{\varphi'(0)} \right| \colon \varphi \in \operatorname{Cov}(\mathbb{D}, \Omega) \text{ and } f \in S(\Omega) \right\}. \end{split}$$

It is clear that $a(\Omega) \leq 2\tilde{\eta}(\Omega) + 2\eta(\Omega)$.

Next we prove the opposite inequality for simply connected Ω . For any fixed $\epsilon > 0$, there exists $\varphi \in \operatorname{Cov}(\mathbb{D},\Omega)$ such that $\varphi''(0)/\varphi'(0) < -2\eta(\Omega) + \epsilon$. This is true because for each $\epsilon > 0$ there is $\varphi \in \operatorname{Cov}(\mathbb{D},\Omega)$ such that $|\varphi''(0)/\varphi'(0)| > 2\eta(\Omega) - \epsilon$, and we may assume that $\varphi''(0)/\varphi'(0) < 0$ since otherwise we can replace $\varphi(z)$ by $\varphi(e^{i\theta}z)$ for some $\theta \in \mathbb{R}$, which also belongs to $\operatorname{Cov}(\mathbb{D},\Omega)$. If Ω is simply connected, then φ is univalent. Set $f = k \circ \varphi^{-1} \in S(\Omega)$, where $k(z) = z(1-z)^{-2}$ is the Koebe function. As $(f \circ \varphi)''(0)/(f \circ \varphi)'(0) = k''(0)/k'(0) = 4$, $a(\Omega) > 4 + 2\eta(\Omega) - \epsilon$. Since $\tilde{\eta} = 2$ for simply connected Ω and ϵ is arbitrary, we must have $a(\Omega) \geq 2\tilde{\eta}(\Omega) + 2\eta(\Omega)$.

Notice that if Ω is simply connected, then Theorem 6 gives $a(\Omega) = 4 + 2\eta(\Omega) \in$ [6, 8]. This yields Osgood's inequality $a(\Omega) \leq 8$ for Ω simply connected. For Ω

convex this gives $a(\Omega)=6$ after appealing to Yamashita's result $a(\Omega)\leq 6$ when Ω is convex $[Y_1]$. Does the stronger result that $a(\Omega)\geq 6$ for any hyperbolic region with equality if and only if Ω is convex hold? We note that $a(\Omega)>4$ in general. We know $a(\Omega)\geq 2/c(\Omega)\geq 4$. If $a(\Omega)=4$, then $c(\Omega)=1/2$, which would imply that Ω is convex ([Hi], [HM]). But for convex Ω , $a(\Omega)=6$. This is a contradiction, so $a(\Omega)>4$. The next result implies that $a(\Omega)\geq 6$ when $\eta(\Omega)\geq 3$.

COROLLARY 1: For any hyperbolic region Ω , $2\eta(\Omega) \leq a(\Omega) \leq 4\eta(\Omega) + 2$. The upper bound is best possible.

Proof: The lower bound follows from $a(\Omega) \geq 2/c(\Omega)$ and $1/c(\Omega) \geq \eta(\Omega)$ [O], while Theorem 2 implies that $\tilde{\eta}(\Omega) \leq \eta(\Omega) + 1$, which yields the upper bound from Theorem 6. Equality holds in the upper bound for any convex region.

Yamashita [Y₁, Prop. 3] showed that $a(\Omega) \leq 8\eta(\Omega)$; Corollary 1 improves this.

COROLLARY 2: If Ω is a hyperbolic region, then $a(\Omega) \leq 4\sqrt{1+3/R^2(\Omega)}$. Equality holds for $\Omega = \mathbb{C} \setminus (-\infty, 0]$.

Proof: Since $R(\Omega)$ is conformally invariant and $\eta(\Omega) \leq \sqrt{1+3/R^2(\Omega)}$ [MM₁], we have $\tilde{\eta}(\Omega) \leq \sqrt{1+3/R^2(\Omega)}$. Theorem 6 then yields $a(\Omega) \leq 4\sqrt{1+3/R^2(\Omega)}$.

The weaker inequality $a(\Omega) \leq 8/R(\Omega)$ follows from work of Yamashita [Y₂] who established a stronger pointwise result.

THEOREM 7: Let Δ and Ω be conformally equivalent. Then $1/2 \leq a(\Delta)/a(\Omega) \leq 2$.

Proof: It is enough to show that $a(\Delta) \leq 2a(\Omega)$. Let $g \in S(\Omega)$ be such that $\Delta = g(\Omega)$. Then $F \in S(\Delta)$ if and only if $f = F \circ g \in S(\Omega)$. Note that

$$\frac{F''(g(z))}{F'(g(z))}g'(z) = \frac{f''(z)}{f'(z)} - \frac{g''(z)}{g'(z)}.$$

We have

$$\begin{split} a(\Delta) &= \sup \left\{ \lambda_{\Delta}^{-1}(w) \left| \frac{F^{''}(w)}{F'(w)} \right| : w \in \Delta \text{ and } F \in S(\Delta) \right\} \\ &= \sup \left\{ \lambda_{\Omega}^{-1}(z) \left| \frac{f^{''}(z)}{f'(z)} - \frac{g^{''}(z)}{g'(z)} \right| : z \in \Omega \text{ and } f \in S(\Omega) \right\} \\ &\leq \sup \left\{ \lambda_{\Omega}^{-1}(z) \left| \frac{f^{''}(z)}{f'(z)} \right| : z \in \Omega \text{ and } f \in S(\Omega) \right\} \\ &+ \sup \left\{ \lambda_{\Omega}^{-1}(z) \left| \frac{g^{''}(z)}{g'(z)} \right| : z \in \Omega \right\} \\ &\leq 2a(\Omega). \end{split}$$

What are the best constants in Theorem 7? If Ω and Δ are simply connected, then $a(\Omega)$, $a(\Delta) \in [6, 8]$, so that $3/4 \leq a(\Delta)/a(\Omega) \leq 4/3$. Are these the best constants in general? Can one obtain a constant upper bound for $|a(\Delta) - a(\Omega)|$?

References

- [BG] A.F. Beardon and F.W. Gehring, Schwarzian derivatives, the Poincaré metric and the kernel function, Commentarii Mathematici Helvetici 55 (1980), 50-64.
- [BS] P.R. Beesack and B. Schwarz, On the zeros of solutions of second-order linear differential equations, Canadian Journal of Mathematics 8 (1956), 504-515.
- [Ha] R. Harmelin, Locally convex functions and the Schwarzian derivative, Israel Journal of Mathematics 67 (1989), 367–379.
- [HM] R. Harmelin and D. Minda, Quasi-invariant domain constants, Israel Journal of Mathematics 77 (1992), 115-127.
- [Hi] J.R. Hilditch, The hyperbolic metric and the distance to the boundary in plane domains, unpublished manuscript, circa 1985.
- [J] V. Jørgensen, On an inequality for the hyperbolic measure and its applications to the theory of functions, Mathematica Scandinavica 4 (1956), 113-124.
- [K] I. Kra, Automorphic Forms and Kleinian Groups, Benjamin, Reading, Mass., 1972.
- [MM₁] W. Ma and D. Minda, Euclidean linear invariance and uniform local convexity, Journal of the Australian Mathematical Society (Series A) **52** (1992), 401-418.
- [MM₂] W. Ma and D. Minda, Hyperbolically convex functions, Annales Polonici Mathematici, to appear.

- [M₁] D. Minda, The Schwarzian derivative and univalence criteria, Contemporary Mathematics **38** (1985), 43-52.
- [M₂] D. Minda, Applications of hyperbolic convexity to euclidean and spherical convexity, Journal d'Analyse Mathématique 49 (1987), 90-105.
- [N] Z. Nehari, The Schwarzian derivative and schlicht functions, Bulletin of the American Mathematical Society 55 (1949), 545-551.
- [O] B. Osgood, Some properties of f''/f' and the Poincaré metric, Indiana University Mathematics Journal 31 (1982), 449-461.
- [P₁] Ch. Pommerenke, Linear-invariante Familien analytischer Funktionen I, Mathematische Annalen 155 (1964), 108-154.
- [P₂] Ch. Pommerenke, Uniformly perfect sets and the Poincaré metric, Archiv der Mathematik 32 (1979), 192-199.
- [S] B. Schwarz, Complex non-oscillation theorems and criteria of univalence, Transactions of the American Mathematical Society 80 (1955), 159-186.
- [Y₁] S. Yamashita, Univalent analytic functions and the Poincaré metric, Kodai Mathematical Journal 13 (1990), 164-175.
- [Y₂] S. Yamashita, La dérivée d'une fonction univalente dans un domaine hyperbolique, Comptes Rendus de l'Académie des Sciences, Paris 314 (1992), 45–48.